Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features
نویسندگان
چکیده
The aim of the present study was to design, implement and evaluate a software system for discriminating between metastatic and primary brain tumors (gliomas and meningiomas) on MRI, employing textural features from routinely taken T1 post-contrast images. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a non-linear least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 67 T1-weighted post-contrast MR images (21 metastases, 19 meningiomas and 27 gliomas). LSFT enhanced the performance of the PNN, achieving classification accuracies of 95.24% for discriminating between metastatic and primary tumors and 93.48% for distinguishing gliomas from meningiomas. To improve the generalization of the proposed classification system, the external cross-validation method was also used, resulting in 71.43% and 81.25% accuracies in distinguishing metastatic from primary tumors and gliomas from meningiomas, respectively. LSFT improved PNN performance, increased class separability and resulted in dimensionality reduction.
منابع مشابه
Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI
The aim of the present study was to design, implement, and evaluate a software system for discriminating between metastases, meningiomas, and gliomas on MRI. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a second degree least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 75 T...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2008